Numerical Calculation of Equivalent Grid Block Permeability Tensors for Heterogeneous Porous Media

نویسنده

  • Louis J. DURLOFSKY
چکیده

A numerical procedure for the determination of equivalent grid block permeability tensors for heterogeneous porous media is presented. The method entails solution of the fine scale pressure equation subject o periodic boundary conditions to yield, upon appropriate averaging of the fine scale velocity field, the coarse scale or equivalent grid block permeability. When the region over which this coarse scale permeability is computed constitutes a representative lementary volume (REV), the resulting equivalent permeability may be interpreted as the effective permeability of the region. Solution of the pressure equation on the fine scale is accomplished through the application of an accurate triangle-based finite element numerical procedure, which allows for the modeling of geometrically complex features. The specification of periodic boundary conditions is shown to yield symmetric, positive definite equivalent permeability tensors in all cases. The method is verified through application to a periodic model problem and is then applied to the scale up of areal and cross sections with fractally generated permeability fields. The applicability and limitations of the method for these more general heterogeneity fields are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Numerical Calculation of Equivalent Permeability Tensor for Fractured Vuggy Porous Media Based on Homogenization Theory

Abstract. A numerical procedure for the evaluation of equivalent permeability tensor for fractured vuggy porous media is presented. At first we proposed a new conceptual model, i.e., discrete fracture-vug network model, to model the realistic fluid flow in fractured vuggy porous medium on fine scale. This new model consists of three systems: rock matrix system, fractures system, and vugs system...

متن کامل

Calculation of Equivalent Permeability of Different Fracture Intersections in Fractured Porous Media

This paper reports a case study of calculation of equivalent permeability in Hot Dry Rock (HDR) system using an approach based on finite volume Computational Fluid Dynamics (CFD) method. In this case study, mass flow rates of water in two fractures crossing in a 300 mm x 300 mm two-dimensional (2D) block are predicted by CFD method for different pressure drops. The predicted mass flow rates are...

متن کامل

Modeling of subgrid effects in coarse-scale simulations of transport in heterogeneous porous media

A methodology for incorporating subgrid effects in coarse-scale numerical models of flow in heterogeneous porous media is presented. The method proceeds by upscaling the deterministic fine-grid permeability description and then solving the pressure equation over the coarse grid to obtain coarse-scale velocities. The coarse-grid saturation equation is formed through a volume average of the fine-...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007